6 resultados para audiogenic seizure

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salaiset aseveljet deals with the relations and co-operation between Finnish and German security police authorities, the Finnish valtiollinen poliisi and the German Reichssicherheitshauptamt (RSHA) and its predecessors. The timeframe for the research stretches from the Nazi seizure of power in 1933 to the end of German-Finnish co-belligerency in 1944. The Finnish Security Police was founded in 1919 to protect the young Finnish Republic from the Communists both in Finland and in Soviet Russia. Professional ties to German colleagues were maintained during the 1920 s, and quickly re-established after the Nazis rose to power in Germany. Typical forms of co-operation concentrated on the fight against both domestic and international Communism, a concern particularly acute in Finland because of her exposed position as a neighbour to the Soviet Union. The common enemy proved to be a powerful unifying concept. During the 1930 s the forms of co-operation developed from regular and routine exchanges of information into personal acquaintancies between the Finnish Security Police top personnel and the highest SS-leadership. The critical period of German-Finnish security police co-operation began in 1941, as Finland joined the German assault on the Soviet Union. Together with the Finnish Security Police, the RSHA set up a previously unknown special unit, the Einsatzkommando Finnland, entrusted with the destruction of the perceived ideological and racial enemies on the northernmost part of the German Eastern Front. Joint actions in northern Finland led also members of the Finnish Security Police to become participants in mass murders of Communists and Jews. Post-war criminal investigations into war crimes cases involving former security police personnel were invariably stymied because of the absence of usually both the suspects and the evidence. In my research I have sought to combine the evidence gathered through an exhaustive study of Finnish Security Police archival material with a wide selection of foreign sources. Important new evidence has been gathered from archives in Germany, Estonia, Latvia, Sweden and the United States. Piece by piece, it has become possible to draw a comprehensive picture of the ultimately fateful relationship of the Finnish Security Police to its mighty German colleague.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) acting through ionotropic GABAA receptors plays a crucial role in the activity of the central nervous system (CNS). It triggers Ca2+ rise providing trophic support in developing neurons and conducts fast inhibitory function in mature neuronal networks. There is a developmental change in the GABAA reversal potential towards more negative levels during the first two postnatal weeks in rodent hippocampus. This change provides the basis for mature GABAergic activity and is attributable to the developmental expression of the neuron-specific potassium chloride cotransporter 2 (KCC2). In this work we have studied the mechanisms responsible for the control of KCC2 developmental expression. As a model system we used hippocampal dissociated cultures plated from embryonic day (E) 17 mice embryos before the onset of KCC2 expression. We showed that KCC2 was significantly up-regulated during the first two weeks of culture development. Interestingly, the level of KCC2 upregulation was not altered by chronic pharmacological blockage of action potentials as well as GABAergic and glutamatergic synaptic transmission. By in silico analysis of the proximal KCC2 promoter region we identified 10 candidate transcription factor binding sites that are highly conserved in mammalian KCC2 genes. One of these transcription factors, namely early growth response factor 4 (Egr4), had similar developmental profile as KCC2 and considerably increased the activity of mouse KCC2 gene in neuronal cells. Next we investigated the involvement of neurotrophic factors in regulation of Egr4 and KCC2 expression. We found that in immature hippocampal cultures Egr4 and KCC2 levels were strongly up-regulated by brain derived neurotrophic factor (BDNF)and neurturin. The effect of neurotrophic factors was dependent on the activation of a mitogen activated protein kinase (MAPK) signal transduction pathway. Intact Egr4-binding site in proximal KCC2 promoter was required for BDNF-induced KCC2 transcription. In vitro data were confirmed by several in vivo experiments where we detected an upregulation of KCC2 protein levels after intrahippocampal administration of BDNF or neurturin. Importantly, a MAPK-dependent rise in Egr4 and KCC2 expression levels was also observed after a period of kainic acid-induced seizure activity in neonatal rats suggesting that neuronal activity might be involved in Egr4-mediated regulation of KCC2 expression. Finally we demonstrated that the mammalian KCC2 gene (alias Slc12a5) generated two neuron-specific isoforms by using alternative promoters and first exons. A novel isoform of KCC2, termed KCC2a, differed from the previously known KCC2b isoform by 40 unique N-terminal amino acid residues. KCC2a expression was restricted to CNS,remained relatively constant during postnatal development, and contributed 20 50% of total KCC2 mRNA expression in the neonatal mouse brainstem and spinal cord. In summary, our data provide insight into the complex regulation of KCC2 expression during early postnatal development. Although basal KCC2 expression seems to be intrinsically regulated, it can be further augmented by neurotrophic factors or by enhanced activity triggering MAPK phosphorylation and Egr4 induction. Additional KCC2a isoform, regulated by another promoter, provides basal KCC2 level in neonatal brainstem and spinal cord required for survival of KCC2b knockout mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cation-Cl- cotransporter (CCC) family comprises of Na+-Cl- cotransporter (NCC), Na+-K+-2Cl- cotransporters (NKCC1-2), and four K+-Cl- cotransporters (KCC1-4). These proteins are involved in several physiological activities, such as cell volume regulation. In neuronal tissues, NKCC1 and KCC2 are important in determining the intracellular Cl- levels and hence the neuronal responses to inhibitory neurotransmitters GABA and glycine. One aim of the work was to elucidate the roles for CCC isoforms in the control of nervous system development. KCC2 mRNA was shown to be developmentally up-regulated and follow neuronal maturation, whereas NKCC1 and KCC4 transcripts were highly expressed in the proliferative zones of subcortical regions. KCC1 and KCC3 mRNA displayed low expression throughout the embryogenesis. These expression profiles suggest a role for CCC isoforms in maturation of synaptic responses and in the regulation of neuronal proliferation during embryogenesis. The major aim of this work was to study the biological consequences of KCC2-deficiency in the adult CNS, by generating transgenic mice retaining 15-20% of normal KCC2 levels. In addition, by using these mice as a tool for in vivo pharmacological analysis, we investigated the requirements for KCC2 in tonic versus phasic GABAA receptor-mediated inhibition. KCC2-deficient mice displayed normal reproduction and life span, but showed several behavioral abnormalities, including increased anxiety-like behavior, impaired performance in water maze, alterations in nociceptive processing, and increased seizure susceptibility. In contrast, the mice displayed apparently normal spontaneous locomotor activity and motor coordination. Pharmacological analysis of KCC2-deficient mice revealed reduced sensititivity to diazepam, but normal gaboxadol-induced sedation, neurosteroid hypnosis and alcohol-induced motor impairment. Electrophysiological recordings from CA1-CA3 subregions of the hippocampus showed that KCC2 deficiency affected the reversal potentials of both the phasic and tonic GABA currents, and that the tonic conductance was not affected. The results suggest that requirement for KCC2 in GABAergic neurotransmission may differ among several functional systems in the CNS, which is possibly due to the more critical role of KCC2 activity in phasic compared to tonic GABAergic inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several hypnosis monitoring systems based on the processed electroencephalogram (EEG) have been developed for use during general anesthesia. The assessment of the analgesic component (antinociception) of general anesthesia is an emerging field of research. This study investigated the interaction of hypnosis and antinociception, the association of several physiological variables with the degree of intraoperative nociception, and aspects of EEG Bispectral Index Scale (BIS) monitoring during general anesthesia. In addition, EEG features and heart rate (HR) responses during desflurane and sevoflurane anesthesia were compared. A propofol bolus of 0.7 mg/kg was more effective than an alfentanil bolus of 0.5 mg in preventing the recurrence of movement responses during uterine dilatation and curettage (D C) after a propofol-alfentanil induction, combined with nitrous oxide (N2O). HR and several HR variability-, frontal electromyography (fEMG)-, pulse plethysmography (PPG)-, and EEG-derived variables were associated with surgery-induced movement responses. Movers were discriminated from non-movers mostly by the post-stimulus values per se or normalized with respect to the pre-stimulus values. In logistic regression analysis, the best classification performance was achieved with the combination of normalized fEMG power and HR during D C (overall accuracy 81%, sensitivity 53%, specificity 95%), and with the combination of normalized fEMG-related response entropy, electrocardiography (ECG) R-to-R interval (RRI), and PPG dicrotic notch amplitude during sevoflurane anesthesia (overall accuracy 96%, sensitivity 90%, specificity 100%). ECG electrode impedances after alcohol swab skin pretreatment alone were higher than impedances of designated EEG electrodes. The BIS values registered with ECG electrodes were higher than those registered simultaneously with EEG electrodes. No significant difference in the time to home-readiness after isoflurane-N2O or sevoflurane-N2O anesthesia was found, when the administration of the volatile agent was guided by BIS monitoring. All other early and intermediate recovery parameters were also similar. Transient epileptiform EEG activity was detected in eight of 15 sevoflurane patients during a rapid increase in the inspired volatile concentration, and in none of the 16 desflurane patients. The observed transient EEG changes did not adversely affect the recovery of the patients. Following the rapid increase in the inhaled desflurane concentration, HR increased transiently, reaching its maximum in two minutes. In the sevoflurane group, the increase was slower and more subtle. In conclusion, desflurane may be a safer volatile agent than sevoflurane in patients with a lowered seizure threshold. The tachycardia induced by a rapid increase in the inspired desflurane concentration may present a risk for patients with heart disease. Designated EEG electrodes may be superior to ECG electrodes in EEG BIS monitoring. When the administration of isoflurane or sevoflurane is adjusted to maintain BIS values at 50-60 in healthy ambulatory surgery patients, the speed and quality of recovery are similar after both isoflurane-N2O and sevoflurane-N2O anesthesia. When anesthesia is maintained by the inhalation of N2O and bolus doses of propofol and alfentanil in healthy unparalyzed patients, movement responses may be best avoided by ensuring a relatively deep hypnotic level with propofol. HR/RRI, fEMG, and PPG dicrotic notch amplitude are potential indicators of nociception during anesthesia, but their performance needs to be validated in future studies. Combining information from different sources may improve the discrimination of the level of nociception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cavernomas are rare neurovascular lesions, encountered in up to 10% of patients harboring vascular abnormalities of the CNS. Cavernomas consist of dilated thin-walled sinusoids or caverns covered by a single layer of endothelium. Due to advancements in neuroradiology, the number of cavernoma patients coming to be evaluated in neurosurgical practice is increasing. In the present work, we summarized our results on the treatment of cavernomas. Particular attention was paid to uncommon locations or insufficiently investigated cavernomas, including 1. Intraventricular cavernomas; 2. Multiple cavernomas; 3. Spinal cavernomas; and 4. Temporal lobe cavernomas. After analyzing the patient series with these lesions, we concluded that: 1. IVCs are characterized by a high tendency to cause repetitive hemorrhages in a short period of time after the first event. In most patients, hemorrhages were not life-threatening. Surgery is indicated when re-bleedings are frequent and the mass-effect causes progressive neurological deterioration. Modern microsurgical techniques allow safe removal of the IVC, but surgery on fourth ventricle cavernomas carries increased risk of postoperative cranial nerve deficits. 2. In MC cases, when the cavernoma bleeds or generates drug-resistant epilepsy, microsurgical removal of the symptomatic lesion is beneficial to patients. In our series, surgical removal of the most active cavernoma usually the biggest lesion with signs of recent hemorrhage - was safe and prevented further bleedings. Epilepsy outcome showed the effectiveness of active treatment of MCs. However, due to the remaining cavernomas, epileptogenic activity can persist postoperatively, frequently necessitating long-term use of antiepileptic drugs. 3. Spinal cavernomas can cause severe neurological deterioration due to low tolerance of the spinal cord to mass-effect with progressive myelopathy. When aggravated by extralesional massive hemorrhage, neurological decline is usually acute and requires immediate treatment. Microsurgical removal of a cavernoma is effective and safe, improving neurological deficits. Sensorimotor deficits and pain improved postoperatively at a high rate, whereas bladder dysfunction remained essentially unchanged, causing social discomfort to patients. 4. Microsurgical removal of temporal lobe cavernomas is beneficial for patents suffering from drug-resistant epilepsy. In our series, 69% of patients with this condition became seizure-free postoperatively. Duration of epilepsy did not correlate with seizure prognosis. The most frequent disabling symptom at follow-up was memory disorder, considered to be the result of a complex interplay between chronic epilepsy and possible damage to the temporal lobe during surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented here has focused on the role of cation-chloride cotransporters (CCCs) in (1) the regulation of intracellular chloride concentration within postsynaptic neurons and (2) on the consequent effects on the actions of the neurotransmitter gamma-aminobutyric acid (GABA) mediated by GABAA receptors (GABAARs) during development and in pathophysiological conditions such as epilepsy. In addition, (3) we found that a member of the CCC family, the K-Cl cotransporter isoform 2 (KCC2), has a structural role in the development of dendritic spines during the differentiation of pyramidal neurons. Despite the large number of publications dedicated to regulation of intracellular Cl-, our understanding of the underlying mechanisms is not complete. Experiments on GABA actions under resting steady-state have shown that the effect of GABA shifts from depolarizing to hyperpolarizing during maturation of cortical neurons. However, it remains unclear, whether conclusions from these steady-state measurements can be extrapolated to the highly dynamic situation within an intact and active neuronal network. Indeed, GABAergic signaling in active neuronal networks results in a continuous Cl- load, which must be constantly removed by efficient Cl- extrusion mechanisms. Therefore, it seems plausible to suggest that key parameters are the efficacy and subcellular distribution of Cl- transporters rather than the polarity of steady-state GABA actions. A further related question is: what are the mechanisms of Cl- regulation and homeostasis during pathophysiological conditions such as epilepsy in adults and neonates? Here I present results that were obtained by means of a newly developed method of measurements of the efficacy of a K-Cl cotransport. In Study I, the developmental profile of KCC2 functionality during development was analyzed both in dissociated neuronal cultures and in acute hippocampal slices. A novel method of photolysis of caged GABA in combination with Cl- loading to the somata was used in this study to assess the extrusion efficacy of KCC2. We demonstrated that these two preparations exhibit a different temporal profile of functional KCC2 upregulation. In Study II, we reported an observation of highly distorted dendritic spines in neurons cultured from KCC2-/- embryos. During their development in the culture dish, KCC2-lacking neurons failed to develop mature, mushroom-shaped dendritic spines but instead maintained an immature phenotype of long, branching and extremely motile protrusions. It was shown that the role of KCC2 in spine maturation is not based on its transport activity, but is mediated by interactions with cytoskeletal proteins. Another important player in Cl- regulation, NKCC1 and its role in the induction and maintenance of native Cl- gradients between the axon initial segment (AIS) and soma was the subject of Study III. There we demonstrated that this transporter mediates accumulation of Cl- in the axon initial segment of neocortical and hippocampal principal neurons. The results suggest that the reversal potential of the GABAA response triggered by distinct populations of interneurons show large subcellular variations. Finally, a novel mechanism of fast post-translational upregulation of the membrane-inserted, functionally active KCC2 pool during in-vivo neonatal seizures and epileptiform-like activity in vitro was identified and characterized in Study IV. The seizure-induced KCC2 upregulation may act as an intrinsic antiepileptogenic mechanism.